Matrices

Solution of Exercise 3.1:

Question 1:

(i) In the given matrix, the number of rows is 3 and the number of columns is 4 . Therefore, the order of the matrix is 3×4.
(ii) Since the order of the matrix is 3×4,

Therefore the total elements are $3 \times 4=12$.
(iii) $a_{13}=$ Element of matrix belongs to first row and third column is 19 .
$a_{21}=$ Element of matrix, belongs to second row and first column is 35 .
$a_{33}=$ Element of matrix, belongs to third row and third column is -5 .
$a_{24}=$ Element of matrix, belongs to second row and fourth column is 12 .
$a_{23}=$ Element of matrix, belongs to second row and third column is $\frac{5}{2}$.

Question 2:

As we know that if a matrix is of order $m \times n$, it has $m n$ elements. Thus, to find the all possible solution of a matrix having 24 elements, we have to find all the ordered pairs of natural numbers whose product is 24 .

The ordered pairs are $(1,24),(24,1),(2,12),(12,2),(3,8),(8,3),(4,6)$ and $(6,4)$.
Therefore the possible orders of a matrix are:
$1 \times 24,24 \times 1,2 \times 12,12 \times 1,3 \times 8,8 \times 3,4 \times 6,6 \times 4$
If matrix has 13 elements then the possible orders are $1 \times 13,13 \times 1$.

Question 3:

As we know that if a matrix is of order $m \times n$, it has $m n$ elements. Thus, to find the all possible solution of a matrix having 18 elements, we have to find all the ordered pairs of natural numbers whose product is 18 .

The ordered pairs are $(1,18),(18,1),(2,9),(9,2),(3,6)$ and $(6,3)$.
Therefore the possible orders of a matrix are: $1 \times 18,18 \times 1,2 \times 9,9 \times 1,3 \times 6,6 \times 3$
If matrix has 5 elements then the possible orders are $1 \times 5,5 \times 1$.

Question 4:

(i) In general, 2×2 matrix is given by $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

It is given that $a_{i j}=\frac{(i+j)^{2}}{2}$
Therefore, $a_{11}=\frac{(1+1)^{2}}{2}=2, a_{12}=\frac{(1+2)^{2}}{2}=\frac{9}{2}, a_{21}=\frac{(2+1)^{2}}{2}=\frac{9}{2}$ and
$a_{22}=\frac{(2+2)^{2}}{2}=8$.
Hence $A=\left[\begin{array}{cc}2 & \frac{9}{2} \\ \frac{9}{2} & 8\end{array}\right]$
(ii) In general, 2×2 matrix is given by $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

It is given that $a_{i j}=\frac{i}{j}$
Therefore, $a_{11}=\frac{1}{1}=1, a_{12}=\frac{1}{2}, a_{21}=\frac{2}{1}=2$ and $a_{22}=\frac{2}{2}=1$.
Hence $\mathrm{A}=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & 1\end{array}\right]$
(iii) In general, 2×2 matrix is given by $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

It is given that $a_{i j}=\frac{(i+2 j)^{2}}{2}$

Therefore, $a_{11}=\frac{(1+2 \times 1)^{2}}{2}=\frac{9}{2}, a_{12}=\frac{(1+2 \times 2)^{2}}{2}=\frac{25}{2}, a_{21}=\frac{(2+2 \times 1)^{2}}{2}=8$ and $a_{22}=\frac{(2+2 \times 2)^{2}}{2}=18$.
Hence $A=\left[\begin{array}{cc}\frac{9}{2} & \frac{25}{2} \\ 8 & 18\end{array}\right]$

Question 5:

(i) In general, 3×4 matrix is given by $\mathrm{A}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$

It is given that $a_{i j}=\frac{1}{2}|-3 i+j|$
Therefore, $a_{11}=\frac{|-3 \times 1+1|}{2}=\frac{|-2|}{2}=1, a_{12}=\frac{|-3 \times 1+2|}{2}=\frac{|-1|}{2}=\frac{1}{2}$,
$a_{13}=\frac{|-3 \times 1+3|}{2}=\frac{|-0|}{2}=0, a_{14}=\frac{|-3 \times 1+4|}{2}=\frac{|1|}{2}=\frac{1}{2}, a_{21}=\frac{|-3 \times 2+1|}{2}=\frac{|-5|}{2}=\frac{5}{2}$,
$a_{22}=\frac{|-3 \times 2+2|}{2}=\frac{|-4|}{2}=2, a_{23}=\frac{|-3 \times 2+3|}{2}=\frac{|-3|}{2}=\frac{3}{2}, a_{24}=\frac{|-3 \times 2+4|}{2}=\frac{|-2|}{2}=1$,
$a_{31}=\frac{|-3 \times 3+1|}{2}=\frac{|-8|}{2}=4, a_{32}=\frac{|-3 \times 3+2|}{2}=\frac{|-7|}{2}=\frac{7}{2}, a_{33}=\frac{|-3 \times 3+3|}{2}=\frac{|-6|}{2}=3$ and $a_{34}=\frac{|-3 \times 3+4|}{2}=\frac{|-5|}{2}=\frac{5}{2}$.
Hence $A=\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right]$
(ii) In general, 3×4 matrix is given by $\mathrm{A}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$

It is given that $a_{i j}=2 i-j$

Therefore, $a_{11}=2 \times 1-1=1, a_{12}=2 \times 1-2=0, a_{13}=2 \times 1-3=-1, a_{14}=2 \times 1-4=-2$, $a_{21}=2 \times 2-1=3, a_{22}=2 \times 2-2=2, a_{23}=2 \times 2-3=1, a_{24}=2 \times 2-4=0$, $a_{31}=2 \times 3-1=5, a_{32}=2 \times 3-2=4, a_{33}=2 \times 3-3=3$ and $a_{34}=2 \times 3-4=2$.
Hence $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$

Question 6:

(i) As given the matrices are equal, therefore each elements of corresponding matrix are equals.

$$
\left[\begin{array}{ll}
4 & 3 \\
\mathrm{x} & 5
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{y} & \mathrm{z} \\
1 & 5
\end{array}\right]
$$

Hence $\mathrm{x}=1, \mathrm{y}=4$ and $\mathrm{z}=3$.
(ii) As given the matrices are equal, therefore each elements of corresponding matrix are equals.

$$
\left[\begin{array}{cc}
x+y & 2 \\
5+z & x y
\end{array}\right]=\left[\begin{array}{cc}
6 & 2 \\
5 & 8
\end{array}\right]
$$

We get following relations:

$$
x+y=6, x y=8,5+z=5
$$

Therefore $\mathrm{z}=0$,
Solving $x+y=6, x y=8$

$$
\begin{aligned}
& x+\frac{8}{x}=6 \\
& x^{2}-6 x+8=0 \\
& (x-4)(x-2)=0 \\
& x=2,4 \\
& y=4,2
\end{aligned}
$$

Two solutions one is $x=2, y=4, z=0$ and $x=4, y=2, z=0$
(iii) As given the matrices are equal, therefore each elements of corresponding matrix are equals.

$$
\left[\begin{array}{c}
x+y+z \\
x+z \\
y+z
\end{array}\right]=\left[\begin{array}{c}
9 \\
5 \\
7
\end{array}\right]
$$

We get following relations:

$$
x+y+z=9, x+z=5, y+z=7
$$

On solving above equations
Hence $x=2, y=4$ and $z=3$.

Question 7:

As given the matrices are equal, therefore each elements of corresponding matrix are equals.

$$
\left[\begin{array}{cc}
\mathrm{a}-\mathrm{b} & 2 \mathrm{a}+\mathrm{c} \\
2 \mathrm{a}-\mathrm{b} & 3 \mathrm{c}+\mathrm{d}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 5 \\
0 & 13
\end{array}\right]
$$

We get following relations:

$$
a-b=-1,2 a+c=5,2 a-b=0,3 c+d=13
$$

On solving above equations
Hence $a=1, b=2, c=3$ and $d=4$.

Question 8:

Answer(C). It is known that a given matrix is square matrix only when number of rows and number of columns are equal.

Question 9:

As given the matrices are equal, therefore each elements of corresponding matrix are equals.

$$
\left[\begin{array}{cc}
3 x+7 & 5 \\
y+1 & 2-3 x
\end{array}\right]=\left[\begin{array}{cc}
0 & y-2 \\
8 & 4
\end{array}\right]
$$

We get following relations:

$$
3 x+7=0, y-2=5, y+1=8,2-3 x=4
$$

On solving above equations
$x=-\frac{7}{3},-\frac{2}{3}$
$y=7$
We get two different value of x , which is not true for matrices given equal.
Answer (B)

Question 10:

The given matrix of the order 3×3 has 9 elements.
Each of the elements can take value 0 or 1 , so each element has two options.
Using multiplication method, the required number of matrices is $2^{9}=512$
Answer (D)

