Sample Question on FORCE, LAW OF MOTION and Linear Momentum Conservation for CLASS IX ($9^{\text {th }}$) CBSC Board

Question-01: A bullet of mass 0.04 kg moving with a speed of $90 \mathrm{~m} \mathrm{~s}-1$ enters a heavy wooden block and is stopped after a distance of 60 cm . What is the average resistive force exerted by the block on the bullet?
Answer: 270N
Question-02: A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 \mathrm{~m} \mathrm{~s}-1$. How long does the body take to stop?
Answer: $a=-2.5 \mathrm{~ms}^{-2}$
Question-03: Constant force acting on a body of mass 3.0 kg changes its speed from $2.0 \mathrm{~m} \mathrm{~s}-1$ to $3.5 \mathrm{~m} \mathrm{~s}-1$ in 25 s . The direction of the motion of the body remains unchanged. What is the magnitude and direction of the force?
Answer: $a=1.5 / 25=0.06 \mathrm{~m} \mathrm{~s}^{-2}$
$F=3 \times 0.06=0.18 \mathrm{~N}$ in the direction of motion.
Question-04: The driver of a three-wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child. What is the average retarding force on the vehicle? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg . 5.8
Answer: $a=-2.5 \mathrm{~ms}^{-2}$, Retarding force $=465 \times 2.5=1.2 \times 103 \mathrm{~N}$
Question-05: A rocket with a lift-off mass $20,000 \mathrm{~kg}$ is blasted upwards with an initial acceleration of $5.0 \mathrm{~m} \mathrm{~s}-2$. Calculate the initial thrust (force) of the blast.
Answer: $F=3.0 \times 10^{5} \mathrm{~N}$
Question-06: A force of 625 N acts on a body of mass 25 kg . Find the acceleration of the body. Answer: Acceleration $=25 \mathrm{~m} / \mathrm{s}^{2}$

Question-07: What force will produce an acceleration of $7 \mathrm{~m} / \mathrm{s}^{2}$ in a body of 10 kg ? Answer: Force $=70 \mathrm{~N}$

Question-08: Calculate the mass of a body when a force of 225 N produces an acceleration of 2.5 $\mathrm{m} / \mathrm{s}^{2}$?
Answer: Mass of the body $=90 \mathrm{~kg}$
Question-09: A mass of 4 kg is moving at a speed of $10 \mathrm{~m} / \mathrm{s}$ in a frictionless surface. It collides with a 3 kg mass moving in the same direction at $5 \mathrm{~m} / \mathrm{s}$. What is the final velocity of the system after the collision?

Question-10: There are two cars moving at a speed of $50 \mathrm{~km} / \mathrm{s}$ and $70 \mathrm{~km} / \mathrm{s}$ with mass of 100 kg and 60 kg respectively. Find the final speed of both after collision?
Answer: $57.5 \mathrm{~km} / \mathrm{s}$

Question-11: A bullet of mass 10 g was hit in a block of wood whose mass is 5 kg . Immediately after the collision the speed of the wood and bullet combination is $0.6 \mathrm{~m} / \mathrm{s}$. Calculate the original speed of the bullet?
Answer: $300 \mathrm{~m} / \mathrm{s}$

Question-12: A man of mass m_{1} is standing on a platform of mass m_{2} kept on a smooth horizontal surface. Suppose the man is starting moving on the platform with a velocity v_{r} relative to the platform. So calculate the velocity of recoil of the platform?
Answer: $\mathrm{v}=\mathrm{m}_{1} \mathrm{vr} / \mathrm{m}_{1}-\mathrm{m}_{2}$
Question-13: Due to residual stresses, a body at rest is suddenly burst into two places of mass 4 kg and 2 kg respectively. Assuming that the places fly apart in opposite directions with a relative velocity of $25 \mathrm{~m} / \mathrm{s}$, determine the speed of each. Neglect air resistance.
Answer: 16.66 m/sec
Question-14: The equation of motion of a particle moving in a straight line is given by $s=18 t$ $+3 \mathrm{t}^{2}-2 t^{3}$ where s is the total distance covered from the starting point in meters at the end of t seconds. Find:
(1) Velocity and acceleration at the start.
(2) The time, when the particle reaches its maximum velocity
(3) The maximum velocity of the particle.

Answer: $18 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{t}=1 / 2 \mathrm{sec}, 19.5 \mathrm{~m} / \mathrm{s}$
Question-15: From a rifle of mass 4 kg a bullet of mass 50 gm is fired with an initial velocity of $35 \mathrm{~ms}-1$. Calculate the initial recoil velocity of the rifle.
Answer: $-0.44 \mathrm{~m} / \mathrm{s}$, the negative sign indicates the direction of recoil (backward).

